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Abstract

In an earlier paper it was shown that the basic one-dimensional transient two-fluid model is capable of

capturing horizontal and near-horizontal slug flow automatically. However, that work did not account for

the effect of gas entrainment into the liquid slug body which is deemed to be an important phenomenon. In

this paper, a mathematical model to account for the entrainment of gas bubbles into liquid slugs is pro-
posed, implemented and validated. The model is cast in the framework of the existing two-fluid model and

is incorporated in a computational procedure, which is applied to the prediction of slug flow in horizontal

and slightly inclined pipes. The model entails the introduction of a scalar equation for the transport of the

dispersed gas bubbles within the liquid. The rate of entrainment of gas at the slug front is supplied as a

closure relation, the expression for which is obtained from existing correlations. The model is validated

against experimental data and the comparison shows satisfactory agreement. However, the inclusion of the

aeration model appears to yield marginal differences when compared to predictions which ignore en-

trainment in the horizontal pipe flow cases studied. More significant differences are obtained in the case of
the flow in a V-section pipeline.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

In slug flow, gas is often entrained from the large elongated gas (often called Taylor) bubble
into the liquid slug and this is thought (if not taken for granted) to have a significant effect on the
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slug behaviour. It is hence desirable to model this phenomenon in order to understand its im-
portance as well as to improve the accuracy of the prediction of slug characteristics. The present
study is focused on the modelling of this gas bubble entrainment (also referred to as ‘‘aeration’’)
and its effects on liquid slugs in horizontal gas–liquid flow in pipes.

In the previous work of Issa and Kempf (2003), it was demonstrated that the one-dimensional
transient two-fluid model is capable of capturing slug initiation and development automatically.
Numerical simulations were made starting from unstable stratified flow in which instabilities
could grow to bridge the pipe and form slugs. The simulations showed that the phenomenon can
be simulated by the model, and that continuous trains of slugs could be generated automatically.
The resulting predictions for some of the main characteristics of slug flow compared favourably
with experimental data. However, that model ignored the phenomenon of small-bubble en-
trainment from the large elongated bubbles preceding the liquid slug. This was thought to be the
reason behind some of the observed discrepancies in the prediction of the overall hold-up. The
model proposed here is an extension of the work of Issa and Kempf and is based on the intro-
duction of a scalar-transport equation for the volume fraction of the entrained dispersed bubbles
in the liquid slug. The momentum equation for the liquid phase is replaced by one for the mixture
of liquid and entrained bubbles. Thus the resulting model retains the same framework as that of
the standard two-fluid model.

The physical mechanism which leads to gas entrainment in horizontal and nearly horizontal
two-phase slug flow is quite complex, and only few experiments have been carried out in order to
arrive at a thorough understanding of it. The work by Jepson (1987) helped to shed some light and
showed that the physical process of slug aeration is very similar to that of air bubble entrainment
in hydraulic jumps. Jepson (1987) studied a stationary slug, by forming a hydraulic jump that
bridged the pipe and observed the resulting bubble entrainment into the liquid from the gas ahead
of it. He suggested that the phenomenon is analogous to the entrainment of small gas bubbles into
the body of slugs occurring in slug flow and this would result from the fragmentation of the tail of
the elongated Taylor bubble into small gas pockets that are entrapped in the flowing liquid
(Chanson, 1996). This is a direct consequence of the strong turbulent action induced by the large
vortex motion set up by the entrance of the liquid film at the slug front (Fernandes et al., 1983), as
is depicted in Fig. 1. Using flash and cine photography, Jepson (1987) observed the formation of
pulses of gas bubbles in the liquid slug, and found that the pulse frequency increases with in-
creasing liquid impingement velocity. Moreover, part of the air which is entrained across the
jump, returns to the Taylor bubble ahead of it. Thus, the net rate of gas entrainment is the result
of a balance between bubble injection and rejection. The slug aeration would therefore correspond
from film
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Fig. 1. Aerated slug unit.
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to swarms of bubbles formed in the mixing region, which then detach from the mixing vortex, like
what happens in a hydraulic jump, where the action of the vortex (often called the ‘‘roller’’),
breaks the free surface ahead of the jump, leading to air packets entering the jump (Chanson,
1996). The pick-up process that occurs at the slug front (Fan et al., 1993), seen in a frame of
reference travelling at the slug front velocity, is akin to a plunging jet (the liquid film) entering a
stationary pool (the slug body) (Bonetto and Lahey, 1993). Several authors found that when this
liquid jet exceeds a critical velocity, small bubbles from the elongated bubble are entrained in the
slug (Bonetto and Lahey, 1993; Manolis, 1995; Grotjahn and Mewes, 2001; Andreussi and
Bendiksen, 1989). Concurrently, aerated liquid sheds from the slug body into the trailing film
(Dukler and Hubbard, 1975).

In most cases, the aeration of the liquid film under the elongated bubble was found to be
negligible since buoyancy tends to drive the dispersed bubbles up leading to de-aeration of the
liquid film. Bendiksen et al. (1996) however, observed a much higher slug void fraction in air–oil
slug flow than in air–water flow. This is probably due to higher degree of aeration of the liquid
film in air–oil systems, thereby contributing to a higher gas entrainment rate into the slug.

The distribution of dispersed gas in the slug (referred to as slug void fraction aB in the present
work) depends on flow rates, pipe diameter, pressure, pipe inclination, and fluid properties
(Bendiksen et al., 1996). In horizontal air–water slug flow, the dispersed gas bubbles are usually
homogeneously distributed over the cross-section at the slug front. The bubbles migrate to the top
of the pipe further along the body of the slug. If the flow rates are high, almost uniform distri-
bution of gas bubbles over the whole slug length occur (Bendiksen et al., 1996). For intermediate
flow rates, the gas fraction decreases along the slug (Andreussi et al., 1993). Fabre and Lin�ee (1992)
observed the stratification of small bubbles in liquid slugs due to buoyancy (overcoming turbulent
dispersion effects).

Aeration increases with slug velocity, and can only be neglected, if the slug velocity is suffi-
ciently low (Nydal and Banerjee, 1996). One example of the dependency on physical properties is
the influence of the surface tension. For a constant Froude number and increasing E€ootv€oos
number, the void fraction in the slug increases, and the surface tension decreases. Hence, surface
tension is an important factor in the break-up of the interface between the elongated bubble and
the slug front (Fabre and Lin�ee, 1992).

The effect of gas entrainment in liquid slugs plays an important role in determining the flow
characteristics. The void fraction within the liquid slug during the entrainment process can be very
high (Ferschneider, 1983). Fabre and Lin�ee (1992) estimated that the void fraction in liquid slugs
can be up to 25%. Sudden instabilities and level surges can occur, such that slug growth and
collapse can become quite different from un-aerated slug flow. One major effect is the break-up of
large slugs into smaller ones (Nydal and Andreussi, 1991). As a consequence, slug frequency,
mean liquid hold-up, and slug body length become strongly dependent on the entrainment pro-
cess.

The most common approach for incorporating gas entrainment in slug flow calculations is the
use of empirical correlations for the dispersed bubble void fraction in the slug. Common relations
are those of Gregory et al. (1978) and Andreussi and Bendiksen (1989). Gregory et al. (1978)
measured the liquid volume fraction in the body of the slug using capacitance-type liquid volume
fraction sensors in a light oil–air system in 25.8 and 51.2 mm diameter pipes. They correlated their
results in terms of the mixture velocity UM only as:
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aLs ¼
1

1þ ðUM=8:66Þ1:39
; ð1Þ
where, in the slug body, the fundamental relation:
aB ¼ 1� aLs ð2Þ

holds.

Malnes (1982) proposed an alternative correlation also based on the same data of Gregory et al.
(1978) as:
aLs ¼ 1� UM

Cc þ UM

; ð3Þ
where Cc is a dimensional coefficient defined as:
Cc ¼ 83
gr
qL

� �0:25

; ð4Þ
and r is the gas–liquid surface tension. Among the different expressions for the slug hold-up, the
one given by Andreussi and Bendiksen (1989), who studied air entrainment into water slugs using
two transparent Plexiglas tubes of 50 and 90 mm internal diameter and 17 m in length, has been
found to be the most accurate over a wide range of experimental conditions. Their correlation is
based on the assumption that, the net rate of gas bubble entrainment in the body of the slug is
given by a mass balance between the bubble production and loss rate, as was shown by Jepson
(1987). Their correlation is given by:
aLs ¼ 1� UM � umf

UM þ um0

ð5Þ
with
umf ¼ 2:6 1
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; ð7Þ

Bo ¼ qLgD
2

r
: ð8Þ
Recently Abdul-Majeed (2000), using his own data consisting of 435 slug hold-up points taken
from seven different sources, has proposed a new correlation in order to compute the slug void
fraction, which only depends on the fluid viscosities and mixture velocity:
aLs ¼ 1:009� 0:006

�
þ 1:3377

lG

lL

�
UM: ð9Þ
Most, if not all, of the available correlations for the average slug void fraction in liquid slugs were
found to be unsatisfactory when applied to different geometries from those used in extracting the
empirical correlations (Paglianti et al., 1992). This deficiency is reinforced by the results of the
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present study. This is perhaps not surprising since the above mentioned correlations are derived
from fully developed slug flow, and do not account for the transient behaviour of slug growth and
collapse.

Alternative modelling approaches involve the application of correlations (also empirical) for
the entrainment rate (Nydal and Andreussi, 1991; Manolis, 1995). This approach can be imple-
mented directly as a closure law in 1D slug models (Bendiksen et al., 1996) as is indeed done here.
The above approaches exist in various combinations and degrees of sophistication.

To obtain a detailed and dynamic representation of the gas volume fraction distribution in
the slug, the present study employs an additional scalar-transport equation for the volume
fraction of gas bubbles in a slug body, which fits within the framework of the two-fluid model.
The momentum and continuity equations for the liquid phase are now taken to stand for the
mixture of liquid and dispersed small bubbles rather than for pure liquid as is normal with
the standard two-fluid model. In these equations, the mixture density replaces that of the pure
liquid.
2. The model

The standard two-fluid model is based on the formulation of two separate sets of conservation
equations for the balance of mass, momentum and energy for each of the phases (Wallis, 1969;
Ishii, 1975). The transfers of mass, momentum, and energy between the two phases, and between
the fluids and the walls, are included via source terms and must be formulated using correlations
(Ishii and Mishima, 1984; Jones and Prosperetti, 1985).

Compared to the two-fluid model for un-aerated flow (Issa and Kempf, 2003), the present
model accounts for mass transfer between the gas and liquid phases, taking place both at the slug
front, where gas bubbles are entrained from the elongated bubble, and at the slug tail, where gas
bubbles leave the slug to enter the next gas bubble (see Fig. 1). This is achieved simply by treating
the aerated liquid (which now contains a dispersion of small gas bubbles) as a single mixture
phase, while retaining the gas as the second phase. At present, the model accounts for gas bubble
entrainment in the slug body region only, assuming therefore that the liquid film is free of bubbles.
In fact the aeration of the liquid film under the elongated bubbles is neglected in most slug flow
models and this is a valid assumption for horizontal and slightly inclined air–water flows, since
buoyancy tends to de-aerate the liquid film. However, this assumption is not an essential feature
of the model, and can easily be dispensed with if necessary.

The model requires the introduction of one additional transport scalar equation for the bubble
concentration within the liquid mixture. The adopted approach employs the drift-flux concept
(Zuber and Findlay, 1965; Ishii, 1978), wherein the mixture of liquid and gas bubbles is treated as
a single phase, and the two phasic velocities are retrieved from the velocity of that mixture by
means of a scalar equation for the slip velocity.

It is easy to show (Bonizzi, 2003) that the liquid and centre of mass velocities are practically
identical in a fully dispersed flow with high liquid to gas density ratios. Thus, the liquid and
bubble velocities may be expressed as:
uL � uM ð10Þ
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and
uB � uM þ us; ð11Þ

respectively. In the above equations, the subscripts L, B, and M relate to liquid, gas bubble, and
the mixture respectively, while us represents the slip velocity between the gas bubbles and liquid:
us ¼ uB � uL: ð12Þ

The following quantities are now defined: aL is the volume fraction of the liquid component (un-
aerated) at any point, aG is the volume fraction of the gas phase flowing separately, i.e. in the
stratified region, aB is the volume fraction of the gas bubbles entrained in the slug body, and aM
stands for the volume fraction of the mixture of liquid and dispersed (i.e. entrained) gas bubbles.
The compatibility equation which needs to be enforced therefore is that between aM and aG and is
given by:
aM þ aG ¼ 1: ð13Þ

Thus in the slug body, aG ¼ 0 and aM ¼ 1. Amongst the mixture, liquid, and dispersed bubbles,
the following relationship holds:
aM ¼ aB þ aL: ð14Þ

Thus, in un-aerated liquid, aB ¼ 0 and aM ¼ aL.

Finally the mixture density qM is given by:
qM ¼ ð1� aBÞqL þ aBqG: ð15Þ

The gas is treated as a compressible fluid and its density is calculated from the ideal gas law; the
liquid is assumed to be incompressible.

When the above assumptions are introduced, the governing equations for an isothermal
transient one-dimensional stratified and aerated slug flow become:

• gas continuity equation:
oðqGaGÞ
ot

þ oðqGaGuGÞ
ox

¼ � _mmB; ð16Þ
• mixture continuity equation:
oðqMaMÞ
ot

þ oðqMaMuMÞ
ox

¼ _mmB; ð17Þ
• gas momentum equation:
oðqGaGuGÞ
ot

þ oðqGaGu
2
GÞ

ox
¼ �aG

op
ox

þ qGaGg sinbþ FwG þ Fi; ð18Þ
• mixture momentum equation:
oðqMaMuMÞ
ot

þ oðqMaMu
2
MÞ

ox
¼ �aM

op
ox

� qMaMg
oh
ox

cosbþ qMaMg sin bþ FwL � Fi; ð19Þ
where FwG and FwL, indicate respectively the forces exerted by the pipe walls on the gas and liquid-
mixture phases, Fi is the interfacial force, p is the gas–liquid interface pressure, h is the height of
the mixture layer, x and t represent the spatial and time coordinate respectively, the pipe incli-
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nation is b, and the acceleration due to gravity is g. Variables with subscript M relate to the gas–
liquid mixture, and it is worth remarking that, when no gas bubbles are present (aB ¼ 0), the
equations reduce to those for a pure liquid phase.

It has to be remarked that in deriving Eq. (19) an additional term containing the derivative of
the drift velocity us is obtained. However, an order of magnitude analysis carried out by Bonizzi
(2003) showed that the term is negligible due to the large density ratio between the gas and the
liquid; hence it is dropped from that equation. Once again, this assumption is not essential to the
model and the term could, if necessary, be retained in the equation.

When compared to the standard two-fluid model, the gas and liquid continuity equations ((16)
and (17) respectively) possess a source term on the right hand side, denoted by _mmB, accounting for
the mass exchange occurring at the front and tail of each slug. It should be noted that the mo-
mentum transfer due to the mass exchange has been neglected in the momentum equations since
normally being much lighter, the gas carries negligible momentum compared to the liquid. A
scalar-transport equation for the conservation of mass of the gas bubbles entrained within the
liquid slug can be formulated from mass conservation considerations as:
oðqGaBÞ
ot

þ oðqGaBuBÞ
ox

¼ _mmB: ð20Þ
This equation serves to determine aB as a function of x and t. In Eq. (20), the diffusion of bubbles
in the axial direction is neglected, and the distribution of bubbles across the pipe cross-sectional
area is assumed to be uniform.

Eqs. (16)–(20) are solved for the following primitive variables: the mixture velocity uM, the gas
velocity uG, the pressure p, the gas fraction aG and the slug voidage aB. All other quantities can be
expressed as function of these.
3. Model closure

Closure models are required for the wall-friction and inter-phase shear forces FwL, FwG, and Fi,
the bubble velocity uB, and the mass transfer between gas and liquid _mmB both at the slug front and
at its tail.
3.1. Shear forces

The inter-phase and gas-wall shear forces are expressed as in the existing model (Issa and
Kempf, 2003) by:
Fi ¼
�siSi
A

ð21Þ
and
FwG ¼ �swGSG
A

; ð22Þ
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respectively. In the above equations, A is the pipe cross-sectional area, Si and SG designate the
interfacial width and the gas wetted perimeter respectively, as shown in Fig. 2. The inter-phase
and gas-wall shear stresses si and swG are commonly related to the dynamic pressure by:
si ¼ 1
2
fiqGjuG � uLjðuG � uLÞ ð23Þ
and
swG ¼ 1
2
fGqGjuGjuG; ð24Þ
respectively. The friction factors are based on the widely used model of Taitel and Dukler (1976).
The expression for the gas-wall friction factor is:
fG ¼ CGRe
�nG
G ; ð25Þ
where the Reynolds number is defined as:
ReG ¼ DGuGqG

lG

: ð26Þ
The hydraulic diameter DG is defined as:
DG ¼ 4AG

ðSi þ SGÞ
: ð27Þ
The coefficients CG and nG respectively have values of 0.046 and 0.25 if the flow is turbulent
(ReG > 2100), or 16 and 1 if the flow is laminar (ReG 6 2100). The interfacial friction factor is
expressed as:
fi ¼ CiRe
�ni
i ; ð28Þ
where Rei is defined as:
Rei ¼
DGurelqG

lG

: ð29Þ
iS

SG

SL

γ

h

Fig. 2. Pipe cross-sectional area and relevant wetted properties for a two-phase stratified flow.
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The velocity urel represents the gas–liquid slip velocity (urel ¼ uG � uL), while Ci and ni have the
same expressions as those for the gas friction factor.

The liquid-wall (or mixture-wall within an aerated slug) shear force is expressed as:
FwL ¼ �swLSL
A

; ð30Þ
where the shear stress is given as follows:
swL ¼ 1
2
fdqLjuMjuM: ð31Þ
In the above equation, fd is an effective friction factor that takes into account the correction
proposed by Malnes (1982), who noticed an increase in friction in slugs containing gas bubbles.
Thus, the friction factor for dispersed gas–liquid flow fd is related to that for the pure liquid phase
flowing alone in the pipe fL by the following equation:
fd ¼ /dfL; ð32Þ
where /d ¼ 1 along the whole flow domain, except within an aerated slug, where the correction
factor of Malnes (1982) is used:
/d ¼
1

1� aB
1

"
þ 15:3

aBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� aBÞ

p u1
uM

#
: ð33Þ
Here, u1 is the terminal velocity of an isolated bubble rising in an infinite medium, given by:
u1 ¼ 1:18
grðqL � qGÞ

q2
L

� �0:25
; ð34Þ
and r is the gas–liquid surface tension. It should be emphasised here that the present model is not
predicated on the use of the Malnes correlation given by Eq. (33); other models to account for the
increase in friction when bubbles are present can be used equally well.

The correlation used for calculating the liquid-wall friction factor fL, is that of Hand (1991),
and Spedding and Hand (1997). It is expressed as:
fL ¼ 24

ResL
; ð35Þ
if the liquid flow is laminar. This is determined by the liquid Reynolds number ReL, thus:
ReL ¼ qLDLuL
lL

6 2100; ð36Þ
where the hydraulic diameter DL is given by:
DL ¼ 4AL

SL
: ð37Þ
If the liquid flow is turbulent (ReL > 2100), then
fL ¼ 0:0262ðaLResLÞ
�0:139

: ð38Þ
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In Eqs. (35) and (38), the liquid Reynolds number ResL is based on the liquid superficial velocity:
ResL ¼ qLULD
lL

: ð39Þ
3.2. Bubble velocity

The bubble velocity in Eq. (20) needs to be specified and a closure model is required for that
purpose; it is here where a drift-flux type relationship is introduced. In reality, the dispersed
bubble distribution across the pipe section may not be uniform (tending to concentrate at the top)
and this depends on the flow rate. Also, the bubbles are unlikely to be of uniform size. In a one-
dimensional model these effects are subsumed in the averaging process but can be accounted for
approximately: the first by a correction factor which modifies an assumed uniform profile, and the
second by the solution of several transport equation like (20) for a range of bubble diameters.
However, such model refinements are not implemented here as the phenomena are considered to
be of second order importance and are hence ignored for the purpose of this article.

The dynamics of the entrained bubbles are naturally governed by the usual laws of motion.
However, in this work it is assumed that the inertial forces are negligible (this can easily be es-
tablished by an order of magnitude analysis) and that the bubbles attain a state of equilibrium
instantaneously. Thus, a local balance between the forces acting on the bubbles (Bonizzi et al., 2001)
is assumed to exist at all times. The most significant forces encountered by a bubble moving in a
liquid stream may reasonably be assumed to be the pressure (Fp) and drag (FD) forces (see Fig. 3).
Assuming steady motion of the bubble, the balance of these forces may be written as:
1

2
u2sABqLCD ¼ � dp

dx
VB; ð40Þ
where AB and VB are the cross-sectional area and volume of the gas bubble respectively. Rear-
rangement of this equation and assuming a spherical bubble of diameter dB gives:
us ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4dBðdp=dxÞ

3CDqL

s
: ð41Þ
From Eqs. (12) and (41), the bubble velocity can finally be obtained as:
uB ¼ uM �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4dBðdp=dxÞ

3CDqL

s
: ð42Þ
τ

τ

u pp B1 2

Fig. 3. Forces acting on a single bubble.
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In this equation, the pressure and the mixture velocity are two of the primitive variables that are
determined as an outcome of the solution of the discretised transport equations (16)–(20). Within
the body of the slug the pressure drops from the slug tail to its front (hence implying a negative
pressure gradient); this means that the bubbles will travel more slowly than the liquid through the
slug (in a reference frame attached to the slug body). This indeed corresponds to experimental
observations.

Two other quantities appearing in Eq. (42) need specification, these are the drag coefficient on
the bubble CD and the bubble diameter dB. Following the experimental findings of Andreussi et al.
(1993), the diameter of the entrained bubbles may be assumed to be constant and equal to 1 mm.
This value is likely to be valid only for that particular experiment, but in the absence of better
information, it is utilised here. This assumption can be readily removed when better correlations
for the entrained bubble diameter become available.

The drag coefficient CD is calculated from the correlation of Tomiyama et al. (1995), who
proposed a modification for the drag coefficient for a bubble due to the presence of a swarm of
bubbles. Their correlation is expressed as:
CD ¼ CDTffiffiffiffiffiffi
aLs

p ; ð43Þ
where
CDT ¼ max
24

ReB
1
��

þ 0:15Re0:687B

�
;
8

3

Eo
Eoþ 4

�
: ð44Þ
In Eq. (44) ReB and Eo represent the bubble Reynolds and E€ootv€oos numbers. The former is given
by:
ReB ¼ qLdBjuM � uBj
lL

; ð45Þ
and the latter by:
Eo ¼ gðqL � qGÞd2
B

r
: ð46Þ
3.3. Mass exchange rates

The shedding rate of dispersed bubbles at the slug tail is obtained by assuming that all the
bubbles arriving at the tail leave the slug and enter the large gas bubble behind it. Hence:
_MMB ¼ qGAðub � uBÞaB; ð47Þ

where ub represents the local velocity at which the tail of the slug propagates (see Fig. 4) and
whose value is determined as explained later. The entrainment rate at the slug front must however
be obtained from an independent correlation. Not many such correlations are available in the
literature, and only three could be found. One was proposed by Nydal and Andreussi (1991), who
investigated, at atmospheric conditions, air–water aerated slugs advancing over a slow moving
liquid layer in a nearly horizontal pipe. Their correlation is expressed by:
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Fig. 4. Displacement of front and tail of the slug as it travels along the pipe.
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_MMB ¼ qGA 0:076
Si
D
ðut

�
� uLfÞ � 0:15

�
; ð48Þ
where ut represents the velocity of propagation of the front of the slug (see Fig. 4), uLf the velocity
of the liquid in the film region, and Si the gas–liquid interfacial width in the film. The second
correlation is due to Manolis (1995):
_MMB ¼ 1:871qGASi½ðut � uLfÞ � 2:126�: ð49Þ
The latter is derived from observations of slug front behaviour in air–water pipe flow at atmo-
spheric conditions in a push-in experiment, in a 1� upward inclined pipe.

Since the entrainment is a consequence of the pick-up rate, due to the entrance of the liquid film
into the liquid slug, one could associate this phenomenon with the air carry-under and bubble
dispersion process associated with a plunging jet (Bonetto and Lahey, 1993). As a limiting case of
plunging jet flow in horizontal configurations, the hydraulic jump (Chanson, 1996) provides
another possible model, to be compared against the purely empirical ones given by Eqs. (48) and
(49). Among the many available correlations for a hydraulic jump, the one recommended by
Chanson (1996) is used here since it is reportedly to be the most widely used in engineering
practice due to its superior performance. It is expressed as:
_MMB ¼ qGALfðut � uLfÞfðFr � 1Þe; ð50Þ
where the Froude number is based on the relative velocity between the slug front and liquid film,
ut � uLf , which corresponds to the velocity of the liquid jet entering the liquid slug in a relative
frame moving at the slug front velocity. The expression for the Froude number is:
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Fr ¼ ut � uLfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gALf=Si

p ; ð51Þ
where ALf represents the area occupied by the liquid in the film. The coefficients f and e are
functions of the Froude number (Rajaratnam, 1967; Wisner, 1965) and their values are:
f ¼ 0:018; e ¼ 1:245 if 2:5 < Fr < 7; ð52Þ

or
f ¼ 0:014; e ¼ 1:4 if 7 < Fr < 30: ð53Þ

The onset of entrainment depends on the velocity difference between the translational velocity of
the slug front, and the liquid film velocity (Andreussi and Bendiksen, 1989; Nydal and Andreussi,
1991; Manolis, 1995). The onset will occur when:
ut � uLf > 2:126 ðm=sÞ; ð54Þ

in Eq. (49),
ut � uLf > 1:974
D
Si

ðm=sÞ; ð55Þ
in Eq. (48), or
ut � uLf >

ffiffiffiffiffiffiffiffiffiffi
g
ALf

Si

r
ðm=sÞ; ð56Þ
in Eq. (50). All of the above alternative correlations were implemented and tested against ex-
perimental data in the work presented herein; the results are summarised later.

It should be stressed that, despite the clear evidence of the strong effect of surface tension and
liquid viscosity on the slug voidage (Bendiksen et al., 1996), none of the above correlations takes
into account the physical properties of the liquid. This deficiency will need further investigation in
future.

The mass transfer rate _mmB in Eq. (20) is per unit volume. The net mass flow rate in Eqs. (47)–
(50) is therefore related to _mmB by:
_MMB ¼
Z

_mmBAdx: ð57Þ
3.4. Film and slug front/tail velocities

In order to predict both onset and rate of entrainment, the relative velocity between the slug
front and the film has to be calculated. Also, to compute the bubble shedding rate, the slug tail
velocity has to be found. Furthermore, the position of the slug front and tail need to be deter-
mined in order to introduce the mass transfer at those locations. All of this can be achieved by
continually monitoring the slugs as they proceed along the pipe (Fig. 5).

Identifying the slug fronts and tails is easy: these are the locations where the gas phase fraction
vanishes. The position of the liquid film, where the value of the film velocity uLf is needed, is
assumed to be where the liquid height h changes slope (see Fig. 5).
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Fig. 5. Quantities needed to calculate the entrainment rate.
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In order to determine the slug front and tail velocities, ut and ub (the former required by Eqs.
(48)–(50), the latter by Eq. (47)) two methods have been tried, both of which give similar results.
In the first, a simple but empirical technique is implemented based on the widely accepted cor-
relation of Bendiksen (1984) which relates the slug velocity to that of the mixture. It is assumed
herein that the front and tail of a slug travel at the same velocity. Hence, both slug velocities are
based on the following equation:
ub ¼ C0uM þ ud ð58Þ
with the distribution parameter C0 and drift velocity ud being 1.2 and 0, or 1.05 and 0:54
ffiffiffiffiffiffi
gD

p

depending on whether the mixture Froude number (FrM ¼ UM=ð
ffiffiffiffiffiffi
gD

p
Þ) is greater or smaller than

the critical value of 3.5 respectively. For a horizontal pipe with internal diameter of 0.078 mm, the
Bendiksen correlation reduces to:
ub ¼ 1:2uM ð59Þ
provided that the mixture velocity is greater than 3.06 m/s.
The alternative method for determining these velocities is to continually track the movements

of each slug front and tail in time and then calculate the velocities simply from the displacement of
these points over successive time steps in the numerical integration. Referring to Fig. 4, the nu-
merically computed slug velocities may be expressed as:
ut ¼
xt2 � xt1
tn � t0

; ð60Þ
for the front, and
ub ¼
xb2 � xb1
tn � t0

; ð61Þ
for the tail, where tn � t0 denotes the time interval for that integration step. Although this pro-
cedure is straight forward, it does entail tedious bookkeeping.

Both of the above approaches to the estimation of the instantaneous slug front/tail velocity
were tried in the present computations. It was found that although the numerically computed slug
velocity was in general different from the Bendiksen correlation (see subsequent section for
comparison), the values obtained were fairly close, especially when the slugs attained an equi-
librium state. Moreover, when used in the mass transfer rate expressions (Eqs. (47)–(50)), these
values gave few significant differences. Therefore, for the sake of expediency, the Bendiksen ap-
proximation was employed in the main.
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3.5. Summary

The model for gas entrainment in horizontal or nearly horizontal two-phase slug flow consists
of equations for the conservation of mass and momentum (16)–(19) for the gas and liquid–gas
mixture phases, and of an equation for the calculation of the bubble voidage in the liquid slug
(20). The model is closed by an equation for the slip velocity of the bubbles (41), an equation for
the shedding rate of bubbles at the slug tail (47), by one of three equations (48), (49), or (50) for
bubble entrainment rate at the slug front, and by Eq. (58) for the computation of the instanta-
neous slug front and tail velocities.
4. Characteristics analysis

Although gas compressibility effects are taken into account in the present model, the analysis of
the compressible form of the model equations is too complex to present here. In any event, the
hyperbolic nature of the system should emerge whether the fluids are compressible or not, and the
outcome would be little affected by fluid compressibility (two more characteristics arise in the latter
case). Hence the analysis presented below pertains to incompressible fluids. Also for brevity, the
analysis is carried out for a horizontal pipe (b ¼ 0).

The set of Eqs. (16)–(20) represents a system of first order partial differential equations that can
be written in a more compact form as:
A
oU
ot

þ B
oU
ox

¼ C; ð62Þ
where A and B are coefficient matrices, U is the solution vector here corresponding to
U ¼ ½aG; aB; uG; uM; p�T; ð63Þ

and C is a vector containing all the algebraic terms. The initial value problem under consideration
is to find a solution of system (62) in some region:
a6 x6 b; tP 0; ð64Þ

subject to the initial condition:
Uðt ¼ 0; xÞ ¼ GðxÞ; ð65Þ

and values of U or its derivatives defined on the boundaries x ¼ a and x ¼ b. The system (62) is
defined to be well-posed (or hyperbolic) when the equations with appropriate boundary condi-
tions and initial values admit a unique solution and this solution depends continuously on the
initial data and boundary conditions. The mathematical character of a set of partial differential
equations is provided by the solution of the eigenvalue system (Hirsch, 1988):
det½B� kA� ¼ 0: ð66Þ

A necessary condition for the system to be well-posed, is that the roots (that physically represent
the characteristics of the system) of Eq. (66) are all real. The characteristics represent the velocities
at which the information travels through the domain; in other words the information propagates
in as many directions as there are eigenvalues associated with the set of equations.
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For the set of Eqs. (16)–(20), the matrices A and B are:
A ¼

1 0 0 0 0

�1 0 0 0 �aMDq
0 aG 0 0 0

0 0 aM 0 0

0 0 0 0 1

2
66664

3
77775 ð67Þ
and
B ¼

uG aG 0 0 0

�uM 0 aM 0 �aMuMDq
0 aGuG 0 aG=qG 0

�paMgD
4 sinðc=2Þ 0 aMuM aM=qM 0

0 0 0 0 uB

2
66664

3
77775; ð68Þ
where Dq � ðqL � qGÞ=qM and c denotes the liquid stratification angle, as indicated in Fig. 2.
Substitution of the matrices given by (67) and (68) into Eq. (66) gives a cubic algebraic equa-
tion for the eigenvalues k, with three solutions that represent three characteristics. The first
solution:
k1 ¼ uB ð69Þ
corresponds to the bubble velocity. The other two are:
k2;3 ¼
ðauG þ buMÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþbÞaGð1�aGÞqMpgD

4 sinðc=2Þ � abðuG � uMÞ2
q

aþ b
; ð70Þ
where a � qGð1� aGÞ and b � qMaG; these are identical to the characteristics arising from the un-
aerated two-fluid model equations for stratified flow (see Banerjee and Chan, 1980; Chun and
Sung, 1996). The last two characteristics are real (and also positive) when:
ðuG � uMÞ2 6
aM
qM

�
þ aG
qG

�
pD

4 sinðc=2Þ gqM: ð71Þ
This represents the condition for which the system of equations becomes hyperbolic and hence
well-posed. Meaningful solutions to the model only exist therefore when this condition is met (see
Issa and Kempf, 2003).

When compressibility of the gas phase is taken into account as is the case with the model
actually used here, two more characteristics arise corresponding to the propagation of pressure
waves (see Bonizzi, 2003). These are given by:
k4;5 ¼ �c; ð72Þ
where c is the speed of sound. Thus, there are five characteristics in all, dictating the number of
boundary conditions that must be imposed. Since four of the characteristics run in the positive
direction, four boundary conditions are needed at inlet and one at outlet.



M. Bonizzi, R.I. Issa / International Journal of Multiphase Flow 29 (2003) 1685–1717 1701
5. Numerical implementation

The model was implemented in a computer code called TRIOMPH (Issa and Abrishami, 1986;
Issa and Kempf, 2003), into which two additional modules were incorporated. The first is used to
monitor the position of each slug travelling in the pipe in order to identify the computational cells
where mass is exchanged between the gas and mixture phases. The rates of entrainment at the
slug front and tail are subsequently calculated. The purpose of the second module is to solve
the scalar-transport equation for the average bubble concentration in the liquid slug (Eq. (20)).
All entrainment rate relationships presented above (i.e. Eq. (48) by Nydal and Andreussi (1991),
Eq. (49) by Manolis (1995), and Eq. (50) from the hydraulic jump theory of Rajaratnam (1967)
and Wisner (1965)) were implemented and compared. Once the volume fraction of bubbles
entrained in the liquid is obtained from Eq. (20), the mixture density qM is determined (from
Eq. (15)), and this in turn enters into the equations for the conservation of momentum and
mass.

The equations solved by the model are (16)–(20), and therefore the solution vector con-
sists of the following variables (see Eq. (63)): gas phase fraction, slug voidage, gas and
liquid centre of mass velocity, and interfacial pressure. The discretisation method used is
the same as that described by Issa and Kempf (2003): the model equations are integrated
using a finite-volume formulation, and discretised using a first order fully implicit scheme in
time, and a first order upwind scheme in space. Fig. 6 shows the staggered grid arrange-
ment for the one-dimensional domain, with control volumes given for velocity and pressure
cells. In the figure, symbols e and w denote the boundaries of the volumes that are centred on
node p.

The finite-volume formulation of the continuity equation, integrated between the times t0 and
tn ¼ t0 þ Dt, is given, for either gas or liquid, by:
ew

velocity nodepressure node

p ew

ew
p ew

(a)

(b)

(c) 

Fig. 6. Staggered grid arrangement: (a) staggered mesh, (b) scalar control volume, and (c) velocity control volume.
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Dx
Dt

qn
p

�
þmax½qn

wu
n
w; 0� þmax½ � qn

eu
n
e ; 0� þ ðqn

eu
n
e � qn

wu
n
wÞ
�
anp

¼ max½qn
wu

n
w; 0�anw þmax½�qn

eu
n
e ; 0�ane þ

Dx
Dt

q0
pa

0
p; ð73Þ
that can be written in a more compact form as:
apanp ¼ anwa
n
w þ anea

n
e þ Sa; ð74Þ
where ae, aw, and ap are finite difference coefficients representing the convective fluxes and Sa
containing the rest of the terms. The discretised momentum equation is as follows:
Dx
Dt

qn
pa

n
p

�
þmax½ � qn

ea
n
eu

n
e ; 0� þmax½qn

wa
n
wu

n
w; 0� þ qn

ea
n
eu

n
e

�
� qn

wa
n
wu

n
w

��
unp

¼ max½qn
wa

n
wu

n
w; 0�unw þmax½�qn

ea
n
eu

n
e ; 0�une � anpðpne � pnwÞ þ

Dx
Dt

q0
pa

0
pu

0
p þ Su; ð75Þ
where Su stands for the whole of the source terms in Eqs. (18) and (19). Eq. (75) can be written in a
more compact form using the operator H that stands for the finite-volume representation of the
spatial convective fluxes, as:
Dx
Dt

qn
pa

n
pu

n
p

�
� q0

pa
0
pu

0
p

	
¼ HuðunpÞ � anpðpne � pnwÞ þ Su: ð76Þ
An overall continuity equation can now be obtained by combining the two continuity equations
for the gas and liquid phases (16) and (17), each weighted by an appropriate reference density, to
give:
Dx
Dt

1

qref
M

anM;pq
n
M;p

��
� a0M;pq

0
M;p

	
þ 1

qref
G

anG;pq
n
G;p

�
� a0G;pq

0
G;p

	�

þ 1

qref
M

anM;eq
n
M;eu

n
M;e

�
� anM;wq

n
M;wu

n
M;w

	
þ 1

qref
G

anG;eq
n
G;eu

n
G;e

�
� anG;wq

n
G;wu

n
G;w

	
: ð77Þ
If the velocities, expressed as in Eq. (76) are now substituted (for details see Bonizzi, 2003) into the
overall continuity equation (77), an equation for the pressure is obtained in the form:
anpp
n
p ¼ anwp

n
w þ anep

n
e þ Sp: ð78Þ
A sequential iterative method is used to solve the system of discretised equations at each time step.
The equations solved in the sequence are as follows:

• mixture momentum equation (19),
• gas momentum equation (18),
• pressure equation (78),
• gas continuity equation (16),
• gas bubble equation (20).

Each of the sets of Eqs. (19), (18), (78), (16) and (20) constitutes a tri-diagonal matrix system
which can be solved directly using coefficients based on old iteration values. The iteration loop is
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executed until the residuals in each equation become smaller than a fixed tolerance. Once con-
vergence is achieved for the given step, a new time increment is calculated based on the following
dimensionless number:
unG;maxDt

Dx
¼ C; ð79Þ
where the constant C in Eq. (79) is typically set at 0.5.
The boundary conditions imposed must reflect both the physics and the mathematical character

of the governing equations (see Section 4). Here, five quantities (corresponding to the five char-
acteristics of the equations) must be specified, four at inlet and one at outlet (dictated by the
directions of the characteristics). At the inlet of the pipe the total liquid hold-up, the dispersed
bubbles voidage (taken to be zero) and the superficial velocities of the gas and liquid are specified
and assumed to remain steady at those values. At the outlet, the pressure is prescribed. The initial
conditions correspond to stratified flow with uniform velocity, phase fractions, and pressure fields.

Liquid slugs generate automatically and are captured in the same way as in two-phase flow
using the ‘‘slug capturing’’ methodology (Issa and Woodburn, 1998; Issa and Kempf, 2003). The
method, allows liquid slugs to be captured as a mechanistic and automatic outcome of the growth
of hydrodynamic instabilities in an Eulerian frame. In order to capture the natural growth of
disturbances at the gas–liquid interface, the numerical resolution must be high. In order to achieve
such accuracy with the currently used first order spatial and temporal discretisation schemes, very
fine computational grids were utilised (typically Dx=D � 0:4 was found to be sufficient). Sys-
tematic checks were carried to verify that all the results are independent of the grid, as Fig. 7
demonstrates for a typical case of aerated slug flow. In the figure, various time-averaged slug
characteristics at a particular location in the pipe (close to the outlet) obtained from different
meshes are compared. The results show very little sensitivity to the mesh density thereby verifying
their accuracy; this also indirectly indicates the well-posed nature of the model equations which
otherwise would not have led to this convergence (see Issa and Kempf, 2003).
6. Results

Two different pipe geometries are chosen in order to validate the model. The first configuration
is horizontal at atmospheric pressure, where hydrodynamic slugs generate. The second geometry
is composed of a V-section (see Fig. 8), consisting of a downward and upward inclined sections
(angle with respect to the horizontal b� 1:5�), where slugs form partly because of terrain-induced
effects. It should be noted that the set of experimental data chosen for validation is independent of
the closure relations used in the present model, thereby bolstering confidence in the validation
exercise. But it should also be remarked that measurements in the literature show wide scatter in
the data for slug characteristics, hence validation of the model ought to be made against a range
of data sets originating from different sources. However, the set of measurements chosen here are
claimed to be accurate, with error margins no larger than 5%. Another good reason for the
present choice is the availability of detailed information on the boundary conditions which en-
ables meaningful comparison between computations and experiment. Nonetheless, the validation
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Fig. 8. V-section geometry.
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presented herein cannot be treated as definitive until comparisons with other sets of data are
carried out.

6.1. Horizontal pipe configuration

Calculations are made for air–water flow at atmospheric conditions in a horizontal pipe, 36 m
long of internal diameter 0.078 m. The gas is treated as compressible, of constant dynamic vis-
cosity of 1.77· 10�5 Pa s. The gas–liquid surface tension is taken to be r ¼ 0:07 N/m. Standard
boundary conditions are used to start the transient simulation (fixed outlet pressure corre-
sponding to atmospheric value, constant superficial velocities and liquid hold-up at the pipe inlet).
The initial hold-up, gas and liquid velocities are assumed to be uniform along the pipe corre-
sponding to a stratified flow regime. The computational mesh is made up of 1250 cells. Four
different flow rates ranging from low to intermediate mixture velocities are studied. Table 1 shows
the gas, liquid, and mixture velocities for the four test cases. The slug characteristics for the cases



Table 1

Superficial and mixture velocities for horizontal slug flow test cases

Case UG (m/s) UL (m/s) UM (m/s)

RUN36 1.548 0.519 2.067

RUN40 1.945 0.751 2.696

RUN42 2.476 1.049 3.525

RUN25 3.463 0.737 4.2
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listed in the table are provided by Manolis (1995), who studied this flow experimentally using
conductivity probes with an error of ±1.5%.

Fig. 9 compares the experimental slug voidage aB measured by Manolis, against the four
empirical correlations described in the introduction. It can be seen that the correlations by An-
dreussi and Bendiksen (1989) and Abdul-Majeed (2000) (Eqs. (5) and (9) respectively) consistently
under-predict the experimental data, while those by Malnes (1982) and Gregory et al. (1978) (Eqs.
(3) and (1) respectively) over-predict them. Although it is quite evident from the figure that the
empirical correlations do not compare well with the experimental data, they do exhibit the ex-
pected trend of increasing slug voidage with increasing mixture velocity.

The comparisons between the Manolis data (1995) and the present numerical predictions ob-
tained using the rates of entrainment in Eqs. (48)–(50), are displayed in Fig. 10. The predicted values
of slug voidage, plotted in the figure, are statistically averaged, as is done for all other slug char-
acteristics that will be treated in this work. The predictions follow the experimental trend with
increasing mixture velocities. From the figure it may be deduced that the experimental data are
matched best when the hydraulic jump correlation (Eq. (50)) is used (discrepancy of 9.5%), although
the Manolis equation (49) leads to reasonable results as well (with a discrepancy of 23%). The
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correlation of Nydal and Andreussi (1991) grossly under-predicts the measured slug voidage by
nearly 55%.

Since both entrainment and shedding rates are based on the Bendiksen correlation, Eq. (58), for
the slug front and tail velocities, it is of interest to evaluate the accuracy of this correlation against
the numerically computed values that are outcome of the transient simulation itself, i.e. Eqs. (60)
and (61). This comparison was made for each instant of time for a typical slug as it travelled along
the pipe. First, in Fig. 11 the numerically computed slug velocity at location L=D ¼ 360 (corre-
sponding to the position of the experimental measurements), is evaluated against available ex-
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perimental data; excellent agreement is found, with a discrepancy of about 4%. Next, in Fig. 12 the
Bendiksen approximation is compared against the numerically computed slug front and tail ve-
locities, for each of the four runs studied. The velocities are plotted as a function of distance along
the pipe, i.e. as the slug front and tail pass through each particular location. The results are shown
for one typical slug in each case as it initiates in the pipe (hence the differences in the plotted x-
coordinate). Although Eq. (58) mostly under-predicts both numerical slug velocities during the
transient period (the slug development region), the discrepancies become reasonably low in the
‘‘steady state’’ (or fully developed region, closer to the pipe exit) with maximum average errors of
15%. The effect of these discrepancies on the entrainment rates (where these velocities are used) is
even smaller, hence justifying use of the Bendiksen correlation.
6.1.1. Bubble distribution along the liquid slug
Fig. 13 shows the gas void fraction distribution inside a slug for the case with the smallest mixture

velocity (UM ¼ 2:067 m/s) when the hydraulic jump rate (Eq. (50)) is used. The other three runs
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Fig. 13. Slug void fraction distribution within a slug, UM ¼ 2:067 m/s.
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exhibit very similar trends for the bubble distribution. The void fraction ismonitored over time for a
particular slug starting from the initial conditions which correspond to stratified flow. As appears
from Fig. 13, the slug voidage profile at the initial stages of entrainment shows an evident peak at
the slug front, decreasing towards a minimum at the slug tail. As the length of the slug stabilises, the
peak in gas bubbles at the slug front gradually levels out (through convection), until an almost
uniform distribution is eventually reached. In fact, as the slugs leave the pipe, the profile appears to
flatten out completely.
6.1.2. Global and film hold-up
Figs. 14 and 15 show the global and film hold-up predictions, for both aerated and un-aerated

slugs, plotted against the experimental data ofManolis (1995). The predicted trends appear to be in
fair agreement with the experimental measurements. While the maximum absolute discrepancies
(relative to the data) for global hold-up are roughly the same (about 8.5%) for both aerated and un-



2 2.25 2.5 2.75 3 3.25 3.5 3.75 4 4.25 4.5 4.75 5

U
M

, mixture velocity [m/s]

0 0

0.2 0.2

0.4 0.4

0.6 0.6

0.8 0.8

1 1

G
lo

ba
l h

ol
d-

up
, [

 ]
Manolis data (1995)
Predictions (aerated slugs)
Predictions (unaerated slugs)
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aerated predictions, the aerated model gives better agreement for the film hold-up (7.5% compared
against 11.3%). Thus, the hold-up predictions are improved when entrainment is included but only
slightly.

6.1.3. Slug frequency
Fig. 16 shows the predicted slug frequencies, with and without entrainment, compared against

the data collected by Manolis (1995). The calculations fit the experimental data well. The
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Fig. 16. Comparisons of predicted slug frequency with experiments.
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discrepancies between the numerical solution and experiments are bounded, and do not exceed,
for the cases studied, 16% in absolute terms. Again, the predictions accounting for gas entrain-
ment, can be said to be more accurate than those ignoring it, although the absolute improvement
is marginal (�9%).

6.1.4. Pressure gradient

The pressure gradient along the pipe is numerically calculated, in a manner consistent with the
experimental procedure followed by Manolis (1995) where two pressure transducers were located
at 20.2 and 29.0 m from the pipe inlet. The measurements of the pressure differences at these
locations are averaged in time as:
dp
dx

� �
¼

Xt¼tlast

t¼t0

Dp
Dx

Dt=ðtlast � t0Þ; ð80Þ
where Dp=Dx, t0, and tlast represent the instantaneous pressure difference and the times when the
measurements start and terminate respectively.

Fig. 17 compares the measured and predicted pressure gradients. It can be observed that the
numerical calculations always under-predict the experimental values, with a discrepancy for both
models (with and without entrainment) of about 25%. It should be noted that previous compu-
tations for un-aerated slugs consistently under-predicted the data obtained from the same ex-
perimental rig. This was also found to be true when the experimental data were compared with
standard pressure-gradient correlations (see Fig. 18) such as those of Lockart and Martinelli
(1949), Baroczy (1965), or Olujic (1985), where the discrepancies with the predictions were found
to be 7%, 15%, and 6% respectively. The suspicion therefore arises that the measurements
themselves might be in error. The only correlation which gives larger pressure losses is that of
Beggs and Brill (1973), but this also yields some of the highest discrepancies with the data.
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6.1.5. Gas–liquid slippage

Fig. 19 shows the average slip velocity (us ¼ uM � uB), expressed in cm/s, between liquid and gas
in the slug body. Examination of Eq. (42), shows that the gas bubbles will travel more slowly than
the liquid phase relative to the slug body, and that the slippage depends on the average pressure
gradient within the slug body. For the cases studied, the numerical trend indicates that the liquid–
gas slippage increases with mixture velocity up to a certain value beyond which it declines. This is
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consistent with the trend of the computed pressure gradients, as shown in Fig. 18. When com-
pared to the mixture velocity, the slip is quite small (typically 1–3% of the mixture velocity).
6.2. V-section

In a V-section, the mechanism that leads to slugging is largely influenced by terrain effects. This
particular slug formation mechanism is mainly due to the change in the dynamics of the liquid film
at the pipe dip, where the pipe changes inclination (from downwards to upwards). Since the film
velocity decreases, the hold-up has to increase at the dip to conserve the mass flow of the liquid
phase. The flow area of the gas is therefore reduced, and this leads to its acceleration. Since the
slip between the gas and liquid becomes larger, unstable waves generate at the interface, and
eventually, block the pipe cross-section forming slugs. If the flow rates are high enough, slug flow
would arise from the combination of the aforementioned mechanisms (hydrodynamic and terrain
induced slugging). Thus, slight terrain undulations may lead to slug formation in addition to those
generated by hydrodynamic instabilities.
6.2.1. Case study

The two-phase flow of water and air in a V-section is simulated using the bubble entrainment
model, and compared against the numerical results obtained by Kempf (1999) ignoring aeration.
The 37 m V-section consists of a downhill section of 14 m, and an uphill section of 23 m in length
(Hale, 1999). Both sections are inclined at 1.5� with respect to the horizontal. The atmospheric
properties of air and water are used (the outlet pressure is fixed to atmospheric). Standard steady
boundary conditions are used: fixed flow rates and liquid hold-up at the pipe inlet are assumed,
and the initial conditions correspond to a uniform stratified flow. Table 2 summarises the three
different cases considered, in terms of the superficial velocities UG and UL. Both superficial ve-



Table 2

Superficial velocities for V-section cases

Case UG (m/s) UL (m/s)

1 6.0 0.6

2 8.0 0.8

3 10.0 1.0
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locities increase with ascending case number. Although the correlation provided by the hydraulic
jump studies (Eq. (50)) performed better than the others for the cases previously investigated, it
could not be applied to the V-section geometry owing to the high mixture velocities considered
that would lead to Froude numbers larger than the upper limit (Fr < 30) for which the model is
valid. Hence the Manolis correlation (Eq. (49)) was used instead. In what follows, the compari-
sons between the experimental data of Hale (1999) and predictions (with and without entrain-
ment) for slug frequency and global hold-up will be made.

The global hold-up calculations, for both aerated and un-aerated models, are compared against
the experiments in Fig. 20. The experimental data show a decrease in the hold-up with increase in
mixture velocity. This trend is well captured by the computations that account for the gas en-
trainment, whereas the standard model shows an opposite trend to the data, in that the hold-up
always increases with mixture velocity. The predictions with the entrainment model reflect the
physics of the flow in a better way due to the lower slug liquid fractions calculated with aeration.
Figs. 21 and 22 show the predicted dimensionless slug sizes and slug voidages versus mixture
velocity. The calculated slug body lengths are in the typical range between 10 and 35 pipe di-
ameters and it is apparent that, if the concentration of gas bubbles is appreciable, the slug liquid
hold-up will be dramatically affected. The slug void fractions increase with mixture velocity (see
Fig. 22) from 28% for the case of lowest mixture velocity, up to a value of 37% for the highest
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velocity. The high gas concentrations in the slug body clearly decrease the liquid concentration,
and this explains the correct trend of the mean hold-up as calculated by the entrainment model
(Fig. 20).

Fig. 23 shows the predicted and measured slug frequency against mixture velocity. The dis-
crepancies between predictions and experiment decrease from a maximum of 38% when the en-
trainment is ignored to 12.5% when entrainment is accounted for. In general, the trend predicted
by both models is in fair agreement with the experiments, since both predict an increase in slug
frequency with increase in mixture velocity.
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It is apparent that the aeration model has more of an impact on the quality of the predictions in
the V-section flow than in the preceding studies of the flow in horizontal pipes. This is probably
due to the higher void fractions in slugs encountered in the V-section flows which would then exert
an appreciable influence on the dynamics of the slug; lower fractions of entrained gas seem not to
have much influence, at least for the cases studied.
7. Conclusion

A model accounting for the aeration phenomenon in horizontal and nearly horizontal two-
phase slug flow has been developed and implemented in the framework of the transient one-
dimensional two-fluid model. The bubble volume concentration is calculated by means of a
transport scalar equation. Closure models for the determination of the slug front and tail ve-
locities, and for the calculation of the rate of entrainment at the slug front are incorporated; these
are based on existing correlations. The model was assessed against some available experimental
data for air–water two-phase slug flow in a horizontal pipe and in a V-section. The model im-
proves the accuracy of predictions for liquid hold-up and slug frequency, compared to those
ignoring entrainment. However, it was found that the improvement was somewhat marginal at
least for the cases of horizontal pipes studied here. Where an appreciable effect was observed was
in the case of V-section flow. There, previous erroneous predictions of the trend in hold-up are
rectified. This could very well be due to the higher void fractions encountered in the latter case,
which would have more of an influence on the slug flow characteristics than when the slug voidage
is low. More exhaustive studies on other pipe configurations and involving wider flow conditions
and different fluids are therefore necessary before making more definitive conclusions as to when
the entrainment phenomenon becomes a dominant factor in determining the characteristics of
slug flow.
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